Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neurogastroenterol Motil ; : e14761, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342975

RESUMEN

INTRODUCTION: The herbal preparation STW 5 ameliorates functional dyspepsia partly by relaxing smooth muscle of the proximal stomach, thus improving gastric accommodation. We explored the unknown pathways responsible for this effect by testing targets known to modulate gastric smooth muscle relaxation. METHODS: STW 5-induced relaxation of smooth muscle strips from guinea pig gastric corpus before and after pharmacological interventions were recorded with force transducers in an organ bath. ORAI1 mRNA expression was tested in the proximal stomach. KEY RESULTS: Blockade of Ca2+ -activated K+ and Cl- channels, voltage-gated L- or T-type Ca2+ channels, TRPA1-, TRPV1-, adenosine or 5-HT4 receptors, antagonizing ryanodine receptors, inhibiting cyclooxygenase or sarcoplasmic reticulum calcium ATPase did not affect STW 5-evoked relaxation. Likewise, protein-kinase A or G were not involved. However, the relaxation evoked by STW 5 was significantly reduced by phorbol-12-myristat-13-acetat, an activator of protein-kinase C, by 2- aminoethyldiphenylborinate, an inhibitor of the IP3 receptor-mediated Ca2+ release from the sarcoplasmic reticulum or by SKF-96365, a nonselective store-operated calcium entry (SOCE) blocker. Furthermore, the mixed TRPC3/SOCE inhibitor Pyr3, but not the selective TRPC3 blocker Pyr10, reduced the effect of STW 5. Finally, BTP2, a potent blocker of ORAI-coupled SOCE, almost abolished STW 5-evoked relaxation. Expression of ORAI1 could be demonstrated in the corpus/fundus. CONCLUSIONS & INFERENCES: STW 5 inhibited SOCE, most likely ORAI channels, which are modulated by IP3- and PKC-dependent mechanisms. Our findings impact on the design of drugs to induce muscle relaxation and help identify phytochemicals with similar modes of actions to treat gastrointestinal disturbances.

2.
PLoS One ; 18(4): e0282732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37053302

RESUMEN

It was suggested that intestinal mucosal secretion is enhanced during muscle relaxation and contraction. Mechanisms of mechanically induced secretion have been studied in rodent species. We used voltage clamp Ussing technique to investigate, in human and porcine colonic tissue, secretion evoked by serosal (Pser) or mucosal (Pmuc) pressure application (2-60 mmHg) to induce distension into the mucosal or serosal compartment, respectively. In both species, Pser or Pmuc caused secretion due to Cl- and, in human colon, also HCO3- fluxes. In the human colon, responses were larger in proximal than distal regions. In porcine colon, Pmuc evoked larger responses than Pser whereas the opposite was the case in human colon. In both species, piroxicam revealed a strong prostaglandin (PG) dependent component. Pser and Pmuc induced secretion was tetrodotoxin (TTX) sensitive in porcine colon. In human colon, a TTX sensitive component was only revealed after piroxicam. However, synaptic blockade by ω-conotoxin GVIA reduced the response to mechanical stimuli. Secretion was induced by tensile rather than compressive forces as preventing distension by a filter inhibited the secretion. In conclusion, in both species, distension induced secretion was predominantly mediated by PGs and a rather small nerve dependent response involving mechanosensitive somata and synapses.


Asunto(s)
Colon , Piroxicam , Humanos , Animales , Porcinos , Piroxicam/farmacología , Tetrodotoxina/farmacología , Prostaglandinas , Mucosa Intestinal , Cloruros
3.
Front Zool ; 20(1): 8, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759847

RESUMEN

BACKGROUND: Gastrointestinal (GI) functions are controlled by the enteric nervous system (ENS) in vertebrates, but data on snakes are scarce, as most studies were done in mammals. However, the feeding of many snakes, including Crotalus atrox, is in strong contrast with mammals, as it consumes an immense, intact prey that is forwarded, stored, and processed by the GI tract. We performed immunohistochemistry in different regions of the GI tract to assess the neuronal density and to quantify cholinergic, nitrergic, and VIPergic enteric neurons. We recorded motility patterns and determined the role of different neurotransmitters in the control of motility. Neuroimaging experiments complemented motility findings. RESULTS: A well-developed ganglionated myenteric plexus (MP) was found in the oesophagus, stomach, and small and large intestines. In the submucous plexus (SMP) most neurons were scattered individually without forming ganglia. The lowest number of neurons was present in the SMP of the proximal colon, while the highest was in the MP of the oesophagus. The total number of neurons in the ENS was estimated to be approx. 1.5 million. In all regions of the SMP except for the oesophagus more nitric oxide synthase+ than choline-acetyltransferase (ChAT)+ neurons were counted, while in the MP ChAT+ neurons dominated. In the SMP most nerve cells were VIP+, contrary to the MP, where numerous VIP+ nerve fibers but hardly any VIP+ neuronal cell bodies were seen. Regular contractions were observed in muscle strips from the distal stomach, but not from the proximal stomach or the colon. We identified acetylcholine as the main excitatory and nitric oxide as the main inhibitory neurotransmitter. Furthermore, 5-HT and dopamine stimulated, while VIP and the ß-receptor-agonist isoproterenol inhibited motility. ATP had only a minor inhibitory effect. Nerve-evoked contractile responses were sodium-dependent, insensitive to tetrodotoxin (TTX), but sensitive to lidocaine, supported by neuroimaging experiments. CONCLUSIONS: The structure of the ENS, and patterns of gastric and colonic contractile activity of Crotalus atrox are strikingly different from mammalian models. However, the main excitatory and inhibitory pathways appear to be conserved. Future studies have to explore how the observed differences are an adaptation to the particular feeding strategy of the snake.

4.
Neurogastroenterol Motil ; 34(12): e14440, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35929768

RESUMEN

BACKGROUND: Despite numerous studies on the enteric nervous system (ENS), we lack fundamental knowledge on neuronal densities or total neuron numbers in different species. There are more anecdotal than actual figures on nerve counts. METHODS: We used standardized preparation techniques and immunohistochemistry with validated panneuronal markers (human or mouse anti-HuD/C) to determine neuronal densities in specimen from the entire gastrointestinal tract of mice, guinea pig, and humans. In parallel, we measured the dimensions of the gastrointestinal regions in mouse and guinea pig. For humans, we had to rely on literature data. KEY RESULTS: The average neuronal densities along the gastrointestinal tract were 35,011 ± 25,017 1/cm2 for the myenteric and 16,685 ± 9098 1/cm2 for the submucous plexus in mice, 24,315 ± 16,627 and 11,850 ± 6122 1/cm2 for guinea pig myenteric and submucous plexus, respectively, and 21,698 ± 9492 and 16,367 ± 5655 1/cm2 for human myenteric and submucous plexus, respectively. The total number of neurons in the ENS was 2.6 million for mice, 14.6 million for guinea pig, and 168 million for human. CONCLUSIONS & INFERENCES: This study reports the first comprehensive nerve cell count in mice, guinea pig, and human ENS. Neuronal densities were comparable between the three species and the differences in the total numbers of enteric neurons are likely due to body size and intestinal length. The number of enteric neurons is comparable to the number of neurons in the spinal cord for all three species.


Asunto(s)
Sistema Nervioso Entérico , Humanos , Cobayas , Ratones , Animales , Sistema Nervioso Entérico/fisiología , Plexo Mientérico , Plexo Submucoso , Neuronas , Encéfalo
5.
Neurogastroenterol Motil ; 34(10): e14380, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35438222

RESUMEN

BACKGROUND: Serotonin (5-HT) is an important mediator in the gastrointestinal tract, acting on different neuronal 5-HT receptors. The ionotropic 5-HT3 receptor mediates immediate but transient spike discharge in human enteric neurons. We studied the role of the metabotropic 5-HT1P , 5-HT4 , and 5-HT7 receptors to activate human submucous neurons. METHODS: Neuroimaging using the voltage sensitive dye Di-8-ANEPPS was performed in submucous plexus preparations from human surgical specimens of the small and large intestine. We synthesized a new, stable 5-HT1P agonist, 5-benzyloxyhydrazonoindalpine (5-BOHIP). KEY RESULTS: 5-HT evoked a fast and late-onset spike discharge in enteric neurons. The fast component was blocked by the 5-HT3 receptor antagonist cilansetron, while the remaining sustained response was significantly reduced by the 5-HT1P receptor antagonist 5-hydroxytryptophanyl-5-hydroxytryptophan amide (5-HTP-DP). The newly synthesized 5-HT1P agonist 5-BOHIP induced a slowly developing, long-lasting activation of submucous neurons, which was blocked by 5-HTP-DP. We could not demonstrate any 5-HT7 receptor-induced spike discharge based on the lack of response to 5-carboxamidotryptamine. Similarly, the 5-HT4 agonists 5-methoxytryptamine and prucalopride evoked no immediate or late-onset spike discharge. CONCLUSIONS & INFERENCES: Our work demonstrated for the first time the presence of functional 5-HT1P receptors on human submucous neurons. Furthermore, we found no evidence for a role of 5-HT4 or 5-HT7 receptors in the postsynaptic activation of human submucous neurons by 5-HT.


Asunto(s)
Serotonina , Plexo Submucoso , 5-Hidroxitriptófano , 5-Metoxitriptamina , Amidas , Humanos , Receptores de Serotonina/fisiología , Serotonina/farmacología
6.
Neurogastroenterol Motil ; 33(8): e14164, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33960578

RESUMEN

BACKGROUND: Acetylcholine is the main excitatory neurotransmitter in the enteric nervous system (ENS) in all animal models examined so far. However, data for the human ENS is scarce. METHODS: We used neuroimaging using voltage and calcium dyes, Ussing chamber, and immunohistochemistry to study fast synaptic neurotransmission in submucosal plexus neurons of the human gut. KEY RESULTS: Electrical stimulation of intraganglionic fiber tracts led to fast excitatory postsynaptic potentials (fEPSPs) in 29 submucosal neurons which were all blocked by the nicotinic antagonist hexamethonium. The nicotinic agonist DMPP mimicked the effects of electrical stimulation and had excitatory effects on 56 of 73 neurons. The unselective NMDA antagonist MK-801 blocked fEPSPs in 14 out of 22 neurons as well as nicotine evoked spike discharge. In contrast, the application of NMDA showed only weak effects on excitability or calcium transients. This agreed with the finding that the specific NMDA antagonist D-APV reduced fEPSPs in only 1 out of 40 neurons. Application of AMPA or kainite had no effect in 41 neurons or evoked spike discharge in only one out of 41 neurons, respectively. Immunohistochemistry showed that 98.7 ± 2.4% of all submucosal neurons (n = 6 preparations, 1003 neurons) stained positive for the nicotinic receptor (α1 , α2 or α3 -subunit). Hexamethonium (200 µM) reduced nerve-evoked chloride secretion by 34.3 ± 18.6% (n = 14 patients), whereas D-APV had no effect. CONCLUSION & INFERENCE: Acetylcholine is the most important mediator of fast excitatory postsynaptic transmission in human submucous plexus neurons whereas glutamatergic fEPSPs were rarely encountered.


Asunto(s)
Neuronas/fisiología , Plexo Submucoso/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/farmacología , Anciano , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen , Neuronas/efectos de los fármacos , Plexo Submucoso/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
7.
Sci Rep ; 10(1): 13791, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796868

RESUMEN

The pig is commonly believed to be a relevant model for human gut functions-however, there are only a few comparative studies and none on neural control mechanisms. To address this lack we identified as one central aspect mechanosensitive enteric neurons (MEN) in porcine and human colon. We used neuroimaging techniques to record responses to tensile or compressive forces in submucous neurons. Compression and stretch caused Ca-transients and immediate spike discharge in 5-11% of porcine and 15-24% of human enteric neurons. The majority of these MEN exclusively responded to either stimulus quality but about 9% responded to both. Most of the MEN expressed choline acetyltransferase and substance P; nitric oxide synthase-positive MEN primarily occurred in distal colon. The findings reveal common features of MEN in human and pig colon which we interpret as a result of species-independent evolutionary conservation rather than a specific functional proximity between the two species.


Asunto(s)
Colon/citología , Mucosa Intestinal/citología , Neuronas/citología , Estrés Mecánico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Calcio/metabolismo , Células Cultivadas , Colina O-Acetiltransferasa/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/fisiología , Óxido Nítrico Sintasa/metabolismo , Especificidad de la Especie , Sustancia P/metabolismo , Porcinos
8.
Neurogastroenterol Motil ; 32(2): e13748, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31612595

RESUMEN

BACKGROUND: Herbal medicinal products with a broad activity spectrum may be promising alternatives to treat functional gastrointestinal disorders (FGD). Menthacarin® is a drug with a fixed combination of peppermint and caraway oils, which is clinically used to treat FGD-associated symptoms. MATERIALS: We studied the effects of peppermint and caraway oils on contractile and secretory activity in 255 human small and large intestinal preparations derived from surgical resections (73 patients). Motility was recorded in circular smooth muscle strips and secretion with the Ussing chamber-voltage clamp technique. Electrical field stimulation evoked nerve induced contractile responses. KEY RESULTS: Peppermint and caraway oil concentrations dependently inhibited muscle contractility as indicated by sustained muscle relaxation and decrease in phasic contractility. These effects occurred in small and large intestinal preparations with IC50 values ranging between 17 and 90 µg/mL for peppermint oil and between 7 and 127 µg/mL for caraway oil. Neither peppermint nor caraway oil influenced the nerve evoked contractile response. The inhibition of contractile activity, but not the muscle relaxation, was prevented by the L-type calcium channel activator Bay K8644 but not by the neurotoxin tetrodotoxin. Both peppermint oil and caraway oil increased epithelial secretion, which remained in tetrodotoxin. CONCLUSION & INTERFERENCE: The findings revealed a strong muscle inhibitory and pro-secretory action of peppermint and caraway oils at clinically relevant concentrations. Both actions were nerve-independent. The inhibition of contractility was mediated by inhibition of L-type calcium channels. The effects on muscle and epithelial activity may contribute to the beneficial effects observed in patients with FGD.


Asunto(s)
Intestinos/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Aceites de Plantas/farmacología , Humanos , Mentha piperita , Técnicas de Cultivo de Órganos
9.
Neuroscience ; 372: 213-224, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29317262

RESUMEN

Within the enteric nervous system, the neurons in charge to control motility of the gastrointestinal tract reside in a particular location nestled between two perpendicular muscle layers which contract and relax. We used primary cultured myenteric neurons of male guinea pigs to study mechanosensitivity of enteric neurons in isolation. Ultrafast Neuroimaging with a voltage-sensitive dye technique was used to record neuronal activity in response to shear stress and strain. Strain was induced by locally deforming the elastic cell culture substrate next to a neuron. Measurements showed that substrate strain was mostly elongating cells. Shear stress was exerted by hydrodynamic forces in a microchannel. Both stimuli induced excitatory responses. Strain activated 14% of the stimulated myenteric neurons that responded with a spike frequency of 1.9 (0.7/3.2) Hz, whereas shear stress excited only a few neurons (5.6%) with a very low spike frequency of 0 (0/0.6) Hz. Thus, shear stress does not seem to be an adequate stimulus for mechanosensitive enteric neurons (MEN) while strain activates enteric neurons in a relevant manner. Analyzing the adaptation behavior of MEN showed that shear stress activated rapidly/slowly/ultraslowly adapting MEN (2/62/36%) whereas strain only slowly (46%) and ultraslowly (54%) MEN. Paired experiments with strain and normal stress revealed three mechanosensitive enteric neuronal populations: one strain-sensitive (37%), one normal stress-sensitive (17%) and one strain- and stress-sensitive (46%). These results indicate that shear stress does not play a role in the neuronal control of motility but normal stress and strain.


Asunto(s)
Mecanorreceptores/fisiología , Plexo Mientérico/fisiología , Potenciales de Acción , Animales , Fenómenos Biomecánicos , Células Cultivadas , Cobayas , Hidrodinámica , Intestino Delgado , Masculino , Mecanorreceptores/citología , Plexo Mientérico/citología , Estimulación Física , Estrés Mecánico , Estrés Fisiológico/fisiología , Imagen de Colorante Sensible al Voltaje
10.
Sci Rep ; 6: 38216, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905561

RESUMEN

IgG of type 1 anti-neuronal nuclear antibody (ANNA-1, anti-Hu) specificity is a serological marker of paraneoplastic neurological autoimmunity (including enteric/autonomic) usually related to small-cell lung carcinoma. We show here that IgG isolated from such sera and also affinity-purified anti-HuD label enteric neurons and cause an immediate spike discharge in enteric and visceral sensory neurons. Both labelling and activation of enteric neurons was prevented by preincubation with the HuD antigen. Activation of enteric neurons was inhibited by the nicotinic receptor antagonists hexamethonium and dihydro-ß-erythroidine and reduced by the P2X antagonist pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid (PPADS) but not by the 5-HT3 antagonist tropisetron or the N-type Ca-channel blocker ω-Conotoxin GVIA. Ca++ imaging experiments confirmed activation of enteric neurons but not enteric glia. These findings demonstrate a direct excitatory action of ANNA-1, in particular anti-HuD, on visceral sensory and enteric neurons, which involves nicotinic and P2X receptors. The results provide evidence for a novel link between nerve activation and symptom generation in patients with antibody-mediated gut dysfunction.


Asunto(s)
Anticuerpos Antineoplásicos , Proteína 4 Similar a ELAV/inmunología , Sistema Nervioso Entérico/inmunología , Células Receptoras Sensoriales/inmunología , Animales , Anticuerpos Antineoplásicos/inmunología , Anticuerpos Antineoplásicos/farmacología , Femenino , Cobayas , Humanos , Masculino
11.
J Physiol ; 594(2): 357-72, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26527433

RESUMEN

KEY POINTS: We present the first systematic and, up to now, most comprehensive evaluation of the basic features of epithelial functions, such as basal and nerve-evoked secretion, as well as tissue resistance, in over 2200 surgical specimens of human small and large intestine. We found no evidence for impaired nerve-evoked epithelial secretion or tissue resistance with age or disease pathologies (stomach, pancreas or colon cancer, polyps, diverticulitis, stoma reversal). This indicates the validity of future studies on epithelial secretion or resistance that are based on data from a variety of surgical specimens. ACh mainly mediated nerve-evoked and basal secretion in the small intestine, whereas vasoactive intestinal peptide and nitric oxide were the primary pro-secretory transmitters in the large intestine. The results of the present study revealed novel insights into regional differences in nerve-mediated secretion in the human intestine and comprise the basis by which to more specifically target impaired epithelial functions in the diseased gut. ABSTRACT: Knowledge on basic features of epithelial functions in the human intestine is scarce. We used Ussing chamber techniques to record basal tissue resistance (R-basal) and short circuit currents (ISC; secretion) under basal conditions (ISC-basal) and after electrical field stimulation (ISC-EFS) of nerves in 2221 resectates from 435 patients. ISC-EFS was TTX-sensitive and of comparable magnitude in the small and large intestine. ISC-EFS or R-basal were not influenced by the patients' age, sex or disease pathologies (cancer, polyps, diverticulitis). Ion substitution, bumetanide or adenylate cyclase inhibition studies suggested that ISC-EFS depended on epithelial cAMP-driven chloride and bicarbonate secretion but not on amiloride-sensitive sodium absorption. Although atropine-sensitive cholinergic components prevailed for ISC-EFS of the duodenum, jejunum and ileum, PG97-269-sensitive [vasoactive intestinal peptide (VIP) receptor 1 antagonist] VIPergic together with L-NAME-sensitive nitrergic components dominated the ISC-EFS in colonic preparations. Differences in numbers of cholinergic or VIPergic neurons, sensitivity of epithelial muscarinic or VIP receptors, or stimulus frequency-dependent transmitter release were not responsible for the region-specific transmitter contribution to ISC-EFS. Instead, the low atropine-sensitivity of ISC-EFS in the colon was the result of high cholinesterase activity because neostigmine revealed cholinergic components. Colonic ISC-EFS remained unchanged after tachykinin, P2X, P2Y or A1 and A2 receptor blockade. R-basal was smaller and ISC-basal was higher in the small intestine. TTX and bumetanide decreased ISC-basal in all regions, suggesting nerve-dependent secretory tone. ISC-basal was atropine-sensitive in the small intestine and PG97-269-sensitive in the large intestine. This comprehensive study reveals novel insights into region-specific nerve-mediated secretion in the human small and large intestine.


Asunto(s)
Potenciales de Acción , Mucosa Intestinal/metabolismo , Neuronas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Bicarbonatos/metabolismo , Cloruros/metabolismo , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inervación , Intestino Grueso/citología , Intestino Grueso/inervación , Intestino Grueso/metabolismo , Intestino Delgado/citología , Intestino Delgado/inervación , Intestino Delgado/metabolismo , Transporte Iónico , Persona de Mediana Edad , Antagonistas Muscarínicos/farmacología , Neuronas/fisiología , Óxido Nítrico/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Antagonistas Purinérgicos/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Péptido Intestinal Vasoactivo/metabolismo
12.
Front Cell Neurosci ; 9: 342, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441520

RESUMEN

The particular location of myenteric neurons, sandwiched between the 2 muscle layers of the gut, implies that their somata and neurites undergo mechanical stress during gastrointestinal motility. Existence of mechanosensitive enteric neurons (MEN) is undoubted but many of their basic features remain to be studied. In this study, we used ultra-fast neuroimaging to record activity of primary cultured myenteric neurons of guinea pig and human intestine after von Frey hair evoked deformation of neurites and somata. Independent component analysis was applied to reconstruct neuronal morphology and follow neuronal signals. Of the cultured neurons 45% (114 out of 256, 30 guinea pigs) responded to neurite probing with a burst spike frequency of 13.4 Hz. Action potentials generated at the stimulation site invaded the soma and other neurites. Mechanosensitive sites were expressed across large areas of neurites. Many mechanosensitive neurites appeared to have afferent and efferent functions as those that responded to deformation also conducted spikes coming from the soma. Mechanosensitive neurites were also activated by nicotine application. This supported the concept of multifunctional MEN. 14% of the neurons (13 out of 96, 18 guinea pigs) responded to soma deformation with burst spike discharge of 17.9 Hz. Firing of MEN adapted rapidly (RAMEN), slowly (SAMEN), or ultra-slowly (USAMEN). The majority of MEN showed SAMEN behavior although significantly more RAMEN occurred after neurite probing. Cultured myenteric neurons from human intestine had similar properties. Compared to MEN, dorsal root ganglion neurons were activated by neurite but not by soma deformation with slow adaptation of firing. We demonstrated that MEN exhibit specific features very likely reflecting adaptation to their specialized functions in the gut.

13.
Neurology ; 85(10): 890-7, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26291285

RESUMEN

OBJECTIVE: To characterize pathogenic effects of antibodies to dipeptidyl-peptidase-like protein 6 (DPPX), a subunit of Kv4.2 potassium channels, on gut and brain neurons. METHODS: We identified a new patient with anti-DPPX encephalitis and analyzed the effects of the patient's serum and purified immunoglobulin G (IgG), and of serum of a previous patient with anti-DPPX encephalitis, on the activity of enteric neurons by voltage-sensitive dye imaging in guinea pig myenteric and human submucous plexus preparations. We studied the subcellular localization of DPPX by immunocytochemistry in cultured murine hippocampal neurons using sera of 4 patients with anti-DPPX encephalitis. We investigated the influence of anti-DPPX-containing serum and purified IgG on neuronal surface expression of DPPX and Kv4.2 by immunoblots of purified murine hippocampal neuron membranes. RESULTS: The new patient with anti-DPPX encephalitis presented with a 2-month episode of diarrhea, which was followed by tremor, disorientation, and mild memory impairment. Anti-DPPX-IgG-containing sera and purified IgG increased the excitability and action potential frequency of guinea pig and human enteric nervous system neurons. Patient sera revealed a somatodendritic and perisynaptic neuronal surface staining that colocalized with the signal of commercial anti-DPPX and Kv4.2 antibodies. Incubation of hippocampal neurons with patient serum and purified IgG resulted in a decreased expression of DPPX and Kv4.2 in neuronal membranes. CONCLUSIONS: Hyperexcitability of enteric nervous system neurons and downregulation of DPPX and Kv4.2 from hippocampal neuron membranes mirror the clinical phenotype of patients with anti-DPPX encephalitis and support a pathogenic role of anti-DPPX antibodies in anti-DPPX encephalitis.


Asunto(s)
Anticuerpos Antiidiotipos/sangre , Encéfalo/patología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/sangre , Encefalitis/sangre , Plexo Mientérico/patología , Proteínas del Tejido Nervioso/sangre , Neuronas/patología , Canales de Potasio/sangre , Anciano , Animales , Anticuerpos Antiidiotipos/administración & dosificación , Encéfalo/efectos de los fármacos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/administración & dosificación , Encefalitis/diagnóstico , Cobayas , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/sangre , Masculino , Ratones , Plexo Mientérico/efectos de los fármacos , Proteínas del Tejido Nervioso/administración & dosificación , Neuronas/efectos de los fármacos , Canales de Potasio/administración & dosificación , Ratas
14.
Front Neurosci ; 9: 465, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26733780

RESUMEN

BACKGROUND AND AIMS: Malfunctions of enteric neurons are believed to play an important role in the pathophysiology of irritable bowel syndrome (IBS). Our aim was to investigate whether neuronal activity in biopsies from IBS patients is altered in comparison to healthy controls (HC). METHODS: Activity of human submucous neurons in response to electrical nerve stimulation and local application of nicotine or a mixture of histamine, serotonin, tryptase, and TNF-α (IBS-cocktail) was recorded in biopsies from 17 HC and 35 IBS patients with the calcium-sensitive-dye Fluo-4 AM. The concentrations of the mediators resembeled those found in biopsy supernatants or blood. Neuronal activity in guinea-pig submucous neurons was studied with the voltage-sensitive-dye di-8-ANEPPS. RESULTS: Activity in submucous ganglia in response to nicotine or electrical nerve stimulation was not different between HC and IBS patients (P = 0.097 or P = 0.448). However, the neuronal response after application of the IBS-cocktail was significantly decreased (P = 0.039) independent of whether diarrhea (n = 12), constipation (n = 5) or bloating (n = 5) was the predominant symptom. In agreement with this we found that responses of submucous ganglia conditioned by overnight incubation with IBS mucosal biopsy supernatant to spritz application of this supernatant was significantly reduced (P = 0.019) when compared to incubation with HC supernatant. CONCLUSION: We demonstrated for the first time reduced neuronal responses in mucosal IBS biopsies to an IBS mediator cocktail. While excitability to classical stimuli of enteric neurons was comparable to HC, the activation by the IBS-cocktail was decreased. This was very likely due to desensitization to mediators constantly released by mucosal and immune cells in the gut wall of IBS patients.

16.
Gut ; 63(6): 938-48, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23929694

RESUMEN

The cholinergic anti-inflammatory pathway (CAIP) has been proposed as a key mechanism by which the brain, through the vagus nerve, modulates the immune system in the spleen. Vagus nerve stimulation (VNS) reduces intestinal inflammation and improves postoperative ileus. We investigated the neural pathway involved and the cells mediating the anti-inflammatory effect of VNS in the gut. The effect of VNS on intestinal inflammation and transit was investigated in wild-type, splenic denervated and Rag-1 knockout mice. To define the possible role of α7 nicotinic acetylcholine receptor (α7nAChR), we used knockout and bone marrow chimaera mice. Anterograde tracing of vagal efferents, cell sorting and Ca(2+) imaging were used to reveal the intestinal cells targeted by the vagus nerve. VNS attenuates surgery-induced intestinal inflammation and improves postoperative intestinal transit in wild-type, splenic denervated and T-cell-deficient mice. In contrast, VNS is ineffective in α7nAChR knockout mice and α7nAChR-deficient bone marrow chimaera mice. Anterograde labelling fails to detect vagal efferents contacting resident macrophages, but shows close contacts between cholinergic myenteric neurons and resident macrophages expressing α7nAChR. Finally, α7nAChR activation modulates ATP-induced Ca(2+) response in small intestine resident macrophages. We show that the anti-inflammatory effect of the VNS in the intestine is independent of the spleen and T cells. Instead, the vagus nerve interacts with cholinergic myenteric neurons in close contact with the muscularis macrophages. Our data suggest that intestinal muscularis resident macrophages expressing α7nAChR are most likely the ultimate target of the gastrointestinal CAIP.


Asunto(s)
Macrófagos/metabolismo , Músculo Liso/citología , Estimulación del Nervio Vago , Nervio Vago/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Desnervación Autonómica , Citocinas/genética , Enteritis/metabolismo , Tránsito Gastrointestinal , Expresión Génica , Macrófagos/citología , Ratones , Ratones Noqueados , Plexo Mientérico/metabolismo , Neuronas/metabolismo , Nicotina/farmacología , Peroxidasa/metabolismo , Transducción de Señal , Bazo/inervación , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/genética
17.
PLoS One ; 8(11): e79264, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223920

RESUMEN

BACKGROUND: The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR). This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. METHODS: Calcium transients ([Ca(2+)]i) in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of ß2 and α7 nAChR was evaluated by ß2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. RESULTS: In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900 nm. The ATP induced [Ca(2+)]i increase was significantly inhibited in 65% or 55% of macrophages by 100 µM or 10 µM nicotine, respectively. This inhibitory effect was reversed by the ß2 nAChR preferring antagonist dihydro-ß-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist), mecamylamine (α3ß4 nAChR-preferring antagonist), α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist). Macrophages in the stomach express ß2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. CONCLUSION: This study is the first in situ demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the ß2 subunit of the nAChR is critically involved in the nicotine-induced inhibition of these resident macrophages.


Asunto(s)
Macrófagos/efectos de los fármacos , Nicotina/farmacología , Receptores Nicotínicos/metabolismo , Estómago/efectos de los fármacos , Adenosina Trifosfato/farmacología , Compuestos de Anilina/metabolismo , Animales , Calcio/metabolismo , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/metabolismo , Estimulantes Ganglionares/farmacología , Mucosa Gástrica/metabolismo , Inmunohistoquímica , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Plexo Mientérico/efectos de los fármacos , Plexo Mientérico/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estómago/inervación , Xantenos/metabolismo
18.
Gastroenterology ; 141(6): 2088-2097.e1, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21875497

RESUMEN

BACKGROUND & AIMS: Protease-activated receptors (PARs) are expressed in the enteric nervous system. Excessive release of proteases has been reported in functional and inflammatory bowel diseases. Studies in several animal models indicate the involvement of neural PARs. We studied the actions of different PAR-activating peptides (AP) in the human submucous plexus and performed comparative studies in guinea pig submucous neurons. METHODS: We used voltage- and calcium-sensitive dye recordings to study the effects of PAR1-AP, PAR2-AP, PAR4-AP, the PAR1 activator thrombin, and the PAR2 activator tryptase on neurons and glia in human and guinea pig submucous plexus. Human preparations were derived from surgical resections. Levels of mucosal secretion evoked by PAR-APs were measured in Ussing chambers. RESULTS: PAR1-AP and thrombin evoked a prominent spike discharge and intracellular Ca(2+) concentration ([Ca](i)) transients in most human submucous neurons and glia. PAR2-AP, tryptase, and PAR4-AP caused significantly weaker responses in a minor population. In contrast, PAR2-AP evoked much stronger responses in enteric neurons and glia of guinea pigs than did PAR1-AP or PAR4-AP. PAR1-AP, but not PAR2-AP or PAR4-AP, evoked a nerve-mediated secretion in human epithelium. The PAR1 antagonist SCH79797 inhibited the PAR1-AP, and thrombin evoked responses on neurons, glia, and epithelial secretion. In the submucous layer of human intestine, but not guinea pig intestine, PAR2-AP evoked [Ca](i) signals in CD68(+) macrophages. CONCLUSIONS: In the human submucous plexus, PAR1, rather than PAR2 or PAR4, activates nerves and glia. These findings indicate that PAR1 should be the focus of future studies on neural PAR-mediated actions in the human intestine; PAR1 might be developed as a therapeutic target for gastrointestinal disorders associated with increased levels of proteases.


Asunto(s)
Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Receptores de Trombina/metabolismo , Plexo Submucoso/metabolismo , Animales , Señalización del Calcio , Femenino , Cobayas , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Neuroglía/fisiología , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje
19.
Photosynth Res ; 108(2-3): 121-32, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21607697

RESUMEN

Iron limitation has a strong impact on electron transport reactions of the unicellular fresh water cyanobacterium Synechococcus elongatus PCC 7942 (thereafter referred to as S. elongatus). Among the various adaptational processes on different cellular levels, iron limitation induces a strongly enhanced expression of IdiC (iron-deficiency-induced protein C). In this article, we show that IdiC is loosely attached to the thylakoid and to the cytoplasmic membranes and that its expression is enhanced during conditions of iron starvation and during the late growth phase. The intracellular IdiC level was even more increased when additional iron was replenished in the late growth phase. On the basis of its amino acid sequence and of its absorbance spectrum, IdiC can be classified as a member of the family of thioredoxin (TRX)-like (2Fe-2S) ferredoxins. The presence of an iron cofactor in IdiC was detected by inductive coupled plasma optical emission spectrometry (ICP-OES). Comparative measurements of electron transport activities of S. elongatus wild type (WT) and an IdiC-merodiploid mutant called MuD, which contained a strongly reduced IdiC content under iron-sufficient as well as iron-deficient growth conditions, were performed. The results revealed that MuD had a strongly increased light sensitivity, especially under iron limitation. The measurements of photosystem II (PS II)-mediated electron transport rates in WT and MuD strain showed that PS II activity was significantly lower in MuD than in the WT strain. Moreover, P(700) (+) re-reduction rates provided evidence that the respiratory activities, which were very low in the MuD strain in the presence of iron, significantly increased in iron-starved cells. Thus, an increase in respiration may compensate for the drastic decrease of photosynthetic electron transport activity in MuD grown under iron starvation. Based on the similarity of the S. elongatus IdiC to the NuoE subunit of the NDH-1 complex in Escherichia coli, it is likely that IdiC has a function in the electron transport processes from NAD(P)H to the plastoquinone pool. This is in agreement with the up-regulation of IdiC in the late growth phase as well as under stress conditions when PS II is damaged. As absence or high reduction of the IdiC level would prevent or reduce the formation of functional NDH-1 complexes, under such conditions electron transport routes via alternative substrate dehydrogenases, donating electrons to the plastoquinone pool, can be assumed to be up-regulated.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deficiencias de Hierro , Synechococcus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Transporte de Electrón/efectos de los fármacos , Hierro/farmacología , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Synechococcus/efectos de los fármacos , Synechococcus/crecimiento & desarrollo , Synechococcus/ultraestructura , Factores de Tiempo
20.
Plant Physiol ; 155(4): 1640-55, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21282404

RESUMEN

The amount of inorganic carbon is one of the main limiting environmental factors for photosynthetic organisms such as cyanobacteria. Using Synechococcus elongatus PCC 7942, we characterized metabolic and transcriptomic changes in cells that had been shifted from high to low CO(2) levels. Metabolic phenotyping indicated an activation of glycolysis, the oxidative pentose phosphate cycle, and glycolate metabolism at lowered CO(2) levels. The metabolic changes coincided with a general reprogramming of gene expression, which included not only increased transcription of inorganic carbon transporter genes but also genes for enzymes involved in glycolytic and photorespiratory metabolism. In contrast, the mRNA content for genes from nitrogen assimilatory pathways decreased. These observations indicated that cyanobacteria control the homeostasis of the carbon-nitrogen ratio. Therefore, results obtained from the wild type were compared with the MP2 mutant of Synechococcus 7942, which is defective for the carbon-nitrogen ratio-regulating PII protein. Metabolites and genes linked to nitrogen assimilation were differentially regulated, whereas the changes in metabolite concentrations and gene expression for processes related to central carbon metabolism were mostly similar in mutant and wild-type cells after shifts to low-CO(2) conditions. The PII signaling appears to down-regulate the nitrogen metabolism at lowered CO(2), whereas the specific shortage of inorganic carbon is recognized by different mechanisms.


Asunto(s)
Carbono/metabolismo , Perfilación de la Expresión Génica , Metaboloma , Synechococcus/metabolismo , Aclimatación , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Regulación Bacteriana de la Expresión Génica , Glucólisis , Homeostasis , Mutación , Nitrógeno/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fenotipo , Synechococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA